89 research outputs found

    Solar-Sailing Trajectory Design for Close-Up NEA Observations Mission

    Get PDF
    Near-Earth Asteroids (NEAs) are an extremely valuable resource to study the origin and evolution of the Solar System more in depth. At the same time, they constitute a serious risk for the Earth in the not-so-remote case of an impact. In order to mitigate the hazard of a potential impact with the Earth, several techniques have been studied so far and, for the majority of them, a good knowledge about the chemical and physical composition of the target object is extremely helpful for the success of the mission. A multiple-rendezvous mission with NEAs, with close-up observations, can help the scientific community to improve the overall knowledge about these objects and to support any mitigation strategy. Because of the cost of this kind of mission in terms of Dv, a solar sail spacecraft is proposed in this study, in order to take advantage of the propellantless characteristic of this system. As part of the DLR/ESA Gossamer roadmap, and thus considering the sailcraft based on this technology, the present work is focused on the search of possible sequences of encounters, with priority on Potentially Hazardous Asteroids (PHAs). Because of the huge amount of NEAs, the selection of the candidates for a multiple rendezvous is firstly a combinatorial problem, with more than a billion of possible sequences for only three consecutive encounters. Moreover, an optimization problem should be solved in order to find a feasible solar-sail trajectory for each leg of the sequence. In order to tackle this mixed combinatorial/optimization problem, the strategy used is divided into two main steps: a sequence search by means of heuristic rules and simplified trajectory models, and a subsequent optimization phase. Preliminary results were presented previously by the authors, demonstrating that this kind of mission is promising. In this paper, we aim to find new sequences by introducing a different approach on the sequence search algorithm and by reducing the area-to-mass ratio of the solar sail. A smaller area-to-mass ratio entails either the possibility to carry on more payload or to reduce the sail area, raising the TRL. A grid search over 10 years of launching dates is carried out, resulting in different sequences of objects depending on the departing date. Two sequences are fully studied and optimized. The mission parameters and trajectories of the sequences found are shown and explained

    Multiple NEA Rendezvous Mission: Solar Sailing Options

    Get PDF
    The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous asteroid for the Earth stipulated the interest in NEA exploration. Close-up observations of these objects will increase drastically our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this groundbreaking propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on the search of possible sequences of NEA encounters. The effectiveness of this approach is demonstrated through a number of fully-optimized trajectories. The results show that it is possible to visit five NEAs within 10 years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58% of the sequences found with an approximated trajectory model can be converted into real solar-sail trajectories. Lastly, this second study shows the effectiveness of the proposed automatic optimization algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user

    Multiple near-earth asteroid rendezvous mission: solar-sailing options

    Get PDF
    The scientific interest in near-Earth asteroids (NEAs) and the classification of some of those as potentially hazardous for the Earth stimulated the interest in their exploration. Close-up observations of these objects will drastically increase our knowledge about the overall NEA population. For this reason, a multiple NEA rendezvous mission through solar sailing is investigated, taking advantage of the propellantless nature of this propulsion technology. Considering a spacecraft based on the DLR/ESA Gossamer technology, this work focuses on a method for searching possible sequences of NEA encounters. The effectiveness of the approach is demonstrated through a number of fully-optimised trajectories. The results show that it is possible to visit five NEAs within 10 years with near-term solar-sail technology. Moreover, a study on a reduced NEA database demonstrates the reliability of the approach used, showing that 58% of the sequences found with an approximated trajectory model can be converted into real feasible solar-sail trajectories. Overall, the study shows the effectiveness of the proposed automatic optimisation algorithm, which is able to find solutions for a large number of mission scenarios without any input required from the user

    Analysis of interplanetary solar sail trajectories with attitude dynamics

    Get PDF
    We present a new approach to the problem of optimal control of solar sails for low-thrust trajectory optimization. The objective was to find the required control torque magnitudes in order to steer a solar sail in interplanetary space. A new steering strategy, controlling the solar sail with generic torques applied about the spacecraft body axes, is integrated into the existing low-thrust trajectory optimization software InTrance. This software combines artificial neural networks and evolutionary algorithms to find steering strategies close to the global optimum without an initial guess. Furthermore, we implement a three rotational degree-of-freedom rigid-body attitude dynamics model to represent the solar sail in space. Two interplanetary transfers to Mars and Neptune are chosen to represent typical future solar sail mission scenarios. The results found with the new steering strategy are compared to the existing reference trajectories without attitude dynamics. The resulting control torques required to accomplish the missions are investigated, as they pose the primary requirements to a real on-board attitude control system

    Solar-Sailing Trajectory Design for Close-Up NEA Observations Mission

    Get PDF
    Near-Earth Asteroids (NEAs) are an extremely valuable resource to study the origin and evolution of the Solar System more in depth. At the same time, they constitute a serious risk for the Earth in the not-so-remote case of an impact. In order to mitigate the hazard of a potential impact with the Earth, several techniques have been studied so far and, for the majority of them, a good knowledge about the chemical and physical composition of the target object is extremely helpful for the success of the mission. A multiple-rendezvous mission with NEAs, with close-up observations, can help the scientific community to improve the overall knowledge about these objects and to support any mitigation strategy. Because of the cost of this kind of mission in terms of Dv, a solar sail spacecraft is proposed in this study, in order to take advantage of the propellantless characteristic of this system. As part of the DLR/ESA Gossamer roadmap, and thus considering the sailcraft based on this technology, the present work is focused on the search of possible sequences of encounters, with priority on Potentially Hazardous Asteroids (PHAs). Because of the huge amount of NEAs, the selection of the candidates for a multiple rendezvous is firstly a combinatorial problem, with more than a billion of possible sequences for only three consecutive encounters. Moreover, an optimization problem should be solved in order to find a feasible solar-sail trajectory for each leg of the sequence. In order to tackle this mixed combinatorial/optimization problem, the strategy used is divided into two main steps: a sequence search by means of heuristic rules and simplified trajectory models, and a subsequent optimization phase. Preliminary results were presented previously by the authors, demonstrating that this kind of mission is promising. In this paper, we aim to find new sequences by introducing a different approach on the sequence search algorithm and by reducing the area-to-mass ratio of the solar sail. A smaller area-to-mass ratio entails either the possibility to carry on more payload or to reduce the sail area, raising the TRL. A grid search over 10 years of launching dates is carried out, resulting in different sequences of objects depending on the departing date. Two sequences are fully studied and optimized. The mission parameters and trajectories of the sequences found are shown and explained

    Повышение эффективности аддитивного электродугового процесса за счёт импульсного управления

    Get PDF
    Объектом исследования является процесс сварки неплавящимся электродом в аргоне. Предмет исследования – разработка процесса аддитивной наплавки изделия неплавящимся электродом с присадкой. Цель работы – разработка процесса аддитивной наплавки в импульсном режиме. В процессе исследования проводились анализ тепловложения в область анода в процессе сварки, способов сварки неплавящимся электродом с применением импульсного питания сварочной дуги и влияния катодной струи на структуру анода. В результате исследования разработан способ сварки дугой, горящей в импульсном режиме, режим импульсной модуляции и оборудование, обеспечивающее его реализацию.The object of research is the process of welding with a non-consumable electrode in argon. The subject of the research is the development of the process of additive surfacing of a product with a non-consumable electrode with an additive. The purpose of the work is to develop an additive deposition process in a pulsed mode. In the course of the study, an analysis was made of the heat input into the anode area during the welding process, non-consumable electrode welding methods using pulsed power supply of the welding arc and the effect of the cathode jet on the anode structure. As a result of the research, a method of welding with an arc burning in a pulsed mode, a mode of pulse modulation and equipment ensuring its implementation have been developed

    Evolutionary neurocontrol: A novel method for low-thrust gravity-assist trajectory optimization

    Get PDF
    This article discusses evolutionary neurocontrol, a novel method for low-thrust gravity-assist trajectory optimization

    Optical solar sail degradation modelling

    Get PDF
    We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails

    Soil to Sail - Asteroid Landers on Near-Term Sailcraft as an Evolution of the GOSSAMER Small Spacecraft Solar Sail Concept for In-Situ Characterization

    Get PDF
    Any effort which intends to physically interact with specific asteroids requires understanding at least of the composition and multi-scale structure of the surface layers, sometimes also of the interior. Therefore, it is necessary first to characterize each target object sufficiently by a precursor mission to design the mission which then interacts with the object. In small solar system body (SSSB) science missions, this trend towards landing and sample-return missions is most apparent. It also has led to much interest in MASCOT-like landing modules and instrument carriers. They integrate at the instrument level to their mothership and by their size are compatible even with small interplanetary missions. The DLR-ESTEC GOSSAMER Roadmap NEA Science Working Groups‘ studies identified Multiple NEA Rendezvous (MNR) as one of the space science missions only feasible with solar sail propulsion. The parallel Solar Polar Orbiter (SPO) study showed the ability to access any inclination and a wide range of heliocentric distances. It used a separable payload module conducting the SPO mission after delivery by sail to the proper orbit. The Displaced L1 (DL1), spaceweather early warning mission study, outlined a very lightweight sailcraft operating close to Earth, where all objects of interest to planetary defence must pass. These and many other studies outline the unique capability of solar sails to provide access to all SSSB, at least within the orbit of Jupiter. Since the original MNR study, significant progress has been made to explore the performance envelope of near-term solar sails for multiple NEA rendezvous. However, although it is comparatively easy for solar sails to reach and rendezvous with objects in any inclination and in the complete range of semi-major axis and eccentricity relevant to NEOs and PHOs, it remains notoriously difficult for sailcraft to interact physically with a SSSB target object as e.g. the HAYABUSA missions do. The German Aerospace Center, DLR, recently brought the GOSSAMER solar sail deployment technology to qualification status in the GOSSAMER-1 project and continues the development of closely related technologies for very large deployable membrane-based photovoltaic arrays in the GOSOLAR project, on which we report separately. We expand the philosophy of the GOSSAMER solar sail concept of efficient multiple sub-spacecraft integration to also include landers for one-way in-situ investigations and sample-return missions. These are equally useful for planetary defence scenarios, SSSB science and NEO utilization. We outline the technological concept used to complete such missions and the synergetic integration and operation of sail and lander. We similarly extend the philosophy of MASCOT and use its characteristic features as well as the concept of Constraints-Driven Engineering for a wider range of operations. For example, the MASCOT Mobility hopping mechanism has already been adapted to the specific needs of MASCOT2. Utilizing sensors as well as predictions, those actuators could in a further development be used to implement anti-bouncing control schemes, by counteracting with the lander‘s rotation. Furthermore by introducing sudden jerk into the lander by utilization of the mobility, layers of loose regolith can be swirled up for sampling

    Potential effects of optical solar sail degredation on trajectory design

    Get PDF
    The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions
    corecore